Particle Swarms for Feature Extraction of Hyperspectral Data
نویسندگان
چکیده
This paper presents a novel feature extraction algorithm based on particle swarms for processing hyperspectral imagery data. Particle swarm optimization, originally developed for global optimization over continuous spaces, is extended to deal with the problem of feature extraction. A formulation utilizing two swarms of particles was developed to optimize simultaneously a desired performance criterion and the number of selected features. Candidate feature sets were evaluated on a regression problem. Artificial neural networks were trained to construct linear and nonlinear models of chemical concentration of glucose in soybean crops. Experimental results utilizing real-world hyperspectral datasets demonstrate the viability of the method. The particle swarms-based approach presented superior performance in comparison with conventional feature extraction methods, on both linear and nonlinear models. key words: feature extraction, particle swarm optimization, hyperspectral data, neural networks, principal components analysis
منابع مشابه
Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کاملFeature extraction of hyperspectral images using boundary semi-labeled samples and hybrid criterion
Feature extraction is a very important preprocessing step for classification of hyperspectral images. The linear discriminant analysis (LDA) method fails to work in small sample size situations. Moreover, LDA has poor efficiency for non-Gaussian data. LDA is optimized by a global criterion. Thus, it is not sufficiently flexible to cope with the multi-modal distributed data. We propose a new fea...
متن کاملکاهش ابعاد دادههای ابرطیفی به منظور افزایش جداییپذیری کلاسها و حفظ ساختار داده
Hyperspectral imaging with gathering hundreds spectral bands from the surface of the Earth allows us to separate materials with similar spectrum. Hyperspectral images can be used in many applications such as land chemical and physical parameter estimation, classification, target detection, unmixing, and so on. Among these applications, classification is especially interested. A hyperspectral im...
متن کاملA Particle Swarm Optimization-based Approach for Hyperspectral Band Selection
In this paper, a feature selection algorithm based on particle swarm optimization for processing remotely acquired hyperspectral data is presented. Since particle swarm optimization was originally developed to search only continuous spaces, it could not deal with the problem of spectral band selection directly. We propose a method utilizing two swarms of particles in order to optimize simultane...
متن کاملSupervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEICE Transactions
دوره 90-D شماره
صفحات -
تاریخ انتشار 2007